نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه ترویج و آموزش کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 استادیار گروه ترویج و کشاورزی، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 دانش آموخته دکتری، گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

10.22092/jaear.2024.364436.1990

چکیده

در سال‌های اخیر، همه‌گیری کووید19 اهمیت آموزش مجازی را در تغییر الگوهای آموزش عالی افزایش داده است. از این رو، نظام آموزش عالی کشاورزی که بر فعالیت‌های عملگرا متکی است، نیاز خاصی به درک رفتار مخاطبان خود برای بهبود نتایج یادگیری دارد. این پژوهش با دیدمان کمی و روش علّی-معلولی به تحلیل رفتار دانشجویان نسبت به نظام‌های مدیریت یادگیری در آموزش عالی کشاورزی در سال تحصیلی 1402-1401 پرداخته است. ابزار تحقیق، پرسشنامه‌ای مبتنی بر ترکیب نظریه رفتار برنامه‌ریزی شده و مدل پذیرش فناوری بود که روایی شکلی آن توسط خبرگان دانشگاه و صنعت، روایی همگرا و واگرای آن با شاخص میانگین واریانس استخراج شده تایید شد (881/0–659/0=AVE). همچنین پایایی همه مولفه‌های تحقیق با محاسبه ضریب تتای ترتیبی (921/0–715/0=Ɵ) و پایایی ترکیبی (950/0–852/0=CR) در سطح مطلوب برآورد شد. داده‌های مورد نیاز از 385 دانشجوی در حال تحصیل در دانشگاه‌های دولتی کشاورزی (385=n) به روش نمونه‌گیری تصادفی طبقه‌ای گردآوری شد و از طریق مدلسازی معادله‌های ساختاری مورد تجزیه و تحلیل قرار گرفت. یافته‌های پژوهش نشان داد که آسانگری درک شده تأثیر مثبت و معناداری بر سودمندی درک شده دارد، اما بر اراده رفتاری استفاده از آموزش نظامند مدیریت یادگیری تأثیری ندارد. همچنین دیگر مؤلفه‌های ناشی از مدل مانند سودمندی درک شده، کنترل درک شده و هنجار ذهنی تأثیر مثبت و معناداری بر میانجی اراده رفتاری داشته و در نهایت 71 درصد از متغیر وابسته رفتار واقعی را تبیین می‌کنند. بنابر یافته‌ها، توصیه‌هایی برای تقویت مؤلفه‌های مؤثر و بهبود آسانگری دسترسی به نظام مدیریت یادگیری ارائه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Behavioral Analysis of Students towards Learning Management System in Agricultural Education

نویسندگان [English]

  • Seyed Mohammad Javad Sobhani 1
  • Omid Jamshidi 2
  • Zahra Fozouni Ardekani 3

1 Assistant Professor, Department of Agricultural Extension and Education, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 PhD. of University of TehraAssistant Professor, Department of Agricultural Extension and Education, Sari Agricultural Sciences and Natural Resources Universityn

3 PhD, Department of Agricultural Extension and Education, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

چکیده [English]

In recent years, the COVID-19 pandemic has heightened the significance of virtual education in transforming higher education patterns. Consequently, the higher education system in agriculture, which relies on hands-on activities, requires a specific understanding of its audience’s behavior to enhance learning outcomes. The current research, adopting a quantitative perspective and a causal approach, has analyzed students' behavior towards Learning Management Systems in higher agricultural education during the academic year 2023. The research instrument was a questionnaire based on the amalgamation of the Theory of Planned Behavior and the Technology Acceptance Model, the face validity of which was confirmed by university and industry experts, and its convergent and divergent validity confirmed with an AVE of 0.659to0.881. Additionally, the reliability of all research components was estimated to be satisfactory with an ordinal theta coefficient of 0.715to0.921 and a CR of 0.852 to 0.950. Data required from 385 students currently enrolled in public agricultural universities (N=9819) were collected using stratified random sampling and analyzed using Structural Equation Modeling. Research findings indicated that perceived ease of use has a positive and significant effect on perceived usefulness but does not affect the behavioral intention to use the LMS education system. Furthermore, other model-derived components, such as perceived usefulness, perceived control, and subjective norms, have a significant positive effect on the mediator behavioral intention, ultimately explaining 71 percent of the actual behavior dependent variable. Based on the results, recommendations were put forth to strengthen the effective components and improve accessibility to the Learning Management System.

کلیدواژه‌ها [English]

  • Learning Management System
  • COVID-19
  • Theory of Planned Behavior
  • Technology Acceptance Model
  • Agricultural Higher Education
حبیبی، آ.، و کلاهی، ب. (۱۴۰۱). مدل‌یابی معادله‌های ساختاری و تحلیل عاملی. تهران: جهاد دانشگاهی، چاپ دوم. حسنی راد، ت.، زین آبادی، ح. ر.، عباسیان، ح.، و آراسته، ح. (1398). تبیین الگوی استفاده از شبکه‌های اجتماعی به عنوان یک سیستم مدیریت آموزش در ایران. رهیافتی نو در مدیریت آموزشی، دوره 10، شماره 2، صص 133-153. DOR: 20.1001.1.20086369.1398.10.38.7.3 رزاقی، ف.، عزیزی خالخیلی، ط.، و میرترابی، م. ا. (1401). تحلیل نقاط قوت، ضعف، فرصت‌ها و تهدیدهای آموزش مجازی در دوران پاندمی کرونا (مورد مطالعه: دانشگاه علوم کشاورزی و منابع طبیعی ساری). تحقیقات اقتصاد و توسعه کشاورزی ایران، دوره 53، شماره 3، صص 805-823 DOI: 10.22059/IJAEDR.2022.337186.669123 زارع رواسان، ا.، اشرفی، ا.، ربیعی ساوجی، سوگل، و امانی، معصومه. (1395). بررسی عوامل موثر در اراده استفاده مستمر دانشجویان از سیستم مدیریت یادگیری. علوم مدیریت ایران، دوره 11، شماره 44، صص 127-151. علم بیگی، ا.، اسماعیلی، ن.، حجازی، س. ی.، و فهام، ا. (1402). اثر پیشران‌های استفاده از رسانه‌های اجتماعی و رفتار جستجوی شغل بر قابلیت اشتغال دانشجویان دانشکده کشاورزی دانشگاه تهران. علوم ترویج و آموزش کشاورزی ایران، دوره 19، شماره 1، صص 121-135.DOR: 20.1001.1.20081758.1402.19.1.8.8 محمدی، ف.، و صفا، ل. (1400). عوامل مؤثر بر استفاده دانشجویان کشاورزی از شبکه‌های اجتماعی مجازی (مورد مطالعه: دانشگاه زنجان). علوم ترویج و آموزش کشاورزی ایران، دوره 17، شماره 2، صص 131-147.DOR: 20.1001.1.20081758.1400.17.2.9.7 مرادی، ر.، السادات ابطحی، معصومه.، و ملکی، سمیه. (1402). واکاوی پدیدارشناسانه تجارب زیسته اعضای هیئت‌علمی از تدریس دروس کشاورزی در سکوی آموزش مجازی. علوم ترویج و آموزش کشاورزی ایران، دوره 19، شماره 1، صص 175-190.
DOR: 20.1001.1.20081758.1402.19.1.11.1
Akter, S., D'ambra, J., & Ray, P. (2011). An evaluation of PLS based complex models: the roles of power analysis, predictive relevance and GoF index. AMCIS 2011 Proceedings - All Submissions. 151. https://aisel.aisnet.org/amcis2011_submissions/151 Al-Mamary, Y. H. S. (2022). Understanding the use of learning management systems by undergraduate university students using the UTAUT model: Credible evidence from Saudi Arabia. International Journal of Information Management Data Insights, 2(2), 100092. DOI:10.1016/j.jjimei.2022.100092 Al-Nuaimi, M. N., & Al-Emran, M. (2021). Learning management systems and technology acceptance models: A systematic review. Education and Information Technologies, 26(5), 5499-5533. DOI:10.1007/s10639-021-10513-3 AL-Nuaimi, M. N., Al Sawafi, O. S., Malik, S. I., Al-Emran, M., & Selim, Y. F. (2022). Evaluating the actual use of learning management systems during the covid-19 pandemic: an integrated theoretical model. Interactive Learning Environments, 1-26. DOI:10.1080/10494820.2022.2055577 Al-Rahmi, W. M., Yahaya, N., Alamri, M. M., Alyoussef, I. Y., Al-Rahmi, A. M., & Kamin, Y. B. (2021). Integrating innovation diffusion theory with technology acceptance model: Supporting students’ attitude towards using a massive open online courses (MOOCs) systems. Interactive Learning Environments, 29(8), 1380-1392. DOI:10.1080/10494820.2019.1629599 Alturki, U., & Aldraiweesh, A. (2021). Application of learning management system (Lms) during the covid-19 pandemic: A sustainable acceptance model of the expansion technology approach. Sustainability, 13(19), 10991. DOI:10.3390/su131910991 Baber, H. (2021). Modelling the acceptance of e-learning during the pandemic of COVID-19-A study of South Korea. The International Journal of Management Education, 19(2), 100503. DOI:10.1016/j.ijme.2021.100503 Barclay, C., Donalds, C., & Osei-Bryson, K. M. (2018). Investigating critical success factors in online learning environments in higher education systems in the Caribbean. Information Technology for Development, 24(3), 582-611. DOI:10.1080/02681102.2018.1476831 Bradley, V. M. (2021). Learning Management System (LMS) use with online instruction. International Journal of Technology in Education, 4(1), 68-92. Cantabella, M., Martínez-España, R., Ayuso, B., Yáñez, J. A., & Muñoz, A. (2019). Analysis of student behavior in learning management systems through a Big Data framework. Future Generation Computer Systems, 90, 262-272. DOI:10.1016/j.future.2018.08.003 Cavus, N. (2013). Selecting a learning management system (LMS) in developing countries: instructors' evaluation. Interactive Learning Environments, 21(5), 419-437. DOI:10.1080/10494820.2011.584321 Cavus, N., Mohammed, Y. B., & Yakubu, M. N. (2021). Determinants of learning management systems during COVID-19 pandemic for sustainable education. Sustainability, 13(9), 5189. DOI:10.3390/su13095189 Chankseliani, M., & McCowan, T. (2021). Higher education and the sustainable development goals. Higher Education, 81(1), 1-8. DOI:10.1007/s10734-020-00652-w Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336. Christopoulos, A., & Sprangers, P. (2021). Integration of educational technology during the Covid-19 pandemic: An analysis of teacher and student receptions. Cogent Education, 8(1), 1964690. DOI:10.1080/2331186X.2021.1964690 Creswell, J. W. (2014). Research design: Quantitative, qualitative, and Mixed methods approaches. SAGE Publications, Inc. Dahiya, S., Jaggi, S., Chaturvedi, K. K., Bhardwaj, A., Goyal, R. C., & Varghese, C. (2016). An elearning system for agricultural education. Indian Research Journal of Extension Education, 12(3), 132-135. Findik-Coşkunçay, D., Alkiş, N., & Özkan-Yildirim, S. (2018). A Structural Model for Students’ Adoption of Learning Management Systems: An Empirical Investigation in the Higher Education Context. Journal of Educational Technology & Society, 21(2), 13–27. http://www.jstor.org/stable/26388376 Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593. DOI:10.1111/bjet.12864 Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Prentice Hall. Hair, Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications. Hallinger, P., & Chatpinyakoop, C. (2019). A bibliometric review of research on higher education for sustainable development, 1998–2018. Sustainability, 11(8), 2401. DOI:10.3390/su11082401 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. DOI:10.1007/s11747-014-0403-8 Huang, F., Teo, T., Sánchez-Prieto, J. C., García-Peñalvo, F. J., & Olmos-Migueláñez, S. (2019). Cultural values and technology adoption: A model comparison with university teachers from China and Spain. Computers & Education, 133, 69-81. DOI:10.1016/j.compedu.2019.01.012 Humida, T., Al Mamun, M. H., & Keikhosrokiani, P. (2022). Predicting behavioral intention to use e-learning system: A case-study in Begum Rokeya University, Rangpur, Bangladesh. Education and information technologies, 27(2), 2241-2265. DOI:10.1007/s10639-021-10707-9 Hussain, M., Ul-Allah, S., Binyameen, M., Jabran, K., & Farooq, M. (2022). COVID-19 and Higher Education in Agriculture Sector of Developing Countries: Impacts and Prospects. Pedagogical Research, 7(1), 100-111. DOI:10.29333/pr/11440 Khan, R. A., & Qudrat-Ullah, H. (2021). Adoption of LMS in higher educational institutions of the Middle East. Springer. Kumar, M., Čepová, L., Raja, M., Balaram, A., & Elangovan, M. (2023). Evaluation of the Quality of Practical Teaching of Agricultural Higher Vocational Courses Based on BP Neural Network. Applied Sciences, 13(2), 1180. DOI:10.3390/app13021180 Maatuk, A. M., Elberkawi, E. K., Aljawarneh, S., Rashaideh, H., & Alharbi, H. (2022). The COVID-19 pandemic and E-learning: challenges and opportunities from the perspective of students and instructors. Journal of computing in higher education, 34(1), 21-38. DOI:10.1007/s12528-021-09274-2 Miah, S. J., Miah, M., & Shen, J. (2020). Editorial note: Learning management systems and big data technologies for higher education. Education and Information Technologies, 25, 725-730. DOI:10.1007/s10639-020-10129-z Mirzayi, K., & Sepahpanah, M. (2021). A Study of E-Learning Maturity in Higher Agricultural Education Using Artificial Neural Network. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 12(2), 117-128. doi: 10.30476/ijvlms.2021.89436.1073 Motaghian, H., Hassanzadeh, A., & Moghadam, D. K. (2013). Factors affecting university instructors' adoption of web-based learning systems: Case study of Iran. Computers & Education, 61, 158-167. DOI:10.1016/j.compedu.2012.09.016 Muthuprasad, T., Aiswarya, S., Aditya, K. S., & Jha, G. K. (2021). Students’ perception and preference for online education in India during COVID-19 pandemic. Social sciences & humanities open, 3(1), 100101. DOI:10.1016/j.ssaho.2020.100101 Pokhrel, S., & Chhetri, R. (2021). A literature review on impact of COVID-19 pandemic on teaching and learning. Higher education for the future, 8(1), 133-141. DOI:10.1177/2347631120983481 Putro, H. P. N., Hadi, S., Rajiani, I., & Abbas, E. W. (2022). Adoption of e-learning in Indonesian higher education: innovation or irritation?. Educational Sciences: Theory & Practice, 22(1), 36-45. Rezaei, M., Mohammadi, H. M., Asadi, A., & Kalantary, K. (2008). Predicting e-learning application in agricultural higher education using technology acceptance model. Turkish Online Journal of Distance Education, 9(1), 85-95. Saunders, M. N. K., Lewis, P., Thornhill, A., & Bristow, A. (2015). Understanding research philosophy and approaches to theory development. In: Saunders, Mark N. K.; Lewis, Philip and Thornhill, Adrian eds. Research Methods for Business Students. Harlow: Pearson Education, pp. 122–161. Smith, K. (2012). Lessons learnt from literature on the diffusion of innovative learning and teaching practices in higher education. Innovations in Education and Teaching International, 49(2), 173-182. DOI:10.1080/14703297.2012.677599 Sulaiman, T. T., Mahomed, A. S. B., Rahman, A. A., & Hassan, M. (2023). Understanding Antecedents of Learning Management System Usage among University Lecturers Using an Integrated TAM-TOE Model. Sustainability, 15(3), 1885. DOI:10.3390/su15031885 Talebian, S., Mohammadi, H. M., & Rezvanfar, A. (2014). Information and communication technology (ICT) in higher education: advantages, disadvantages, conveniences and limitations of applying e-learning to agricultural students in Iran. Procedia-Social and Behavioral Sciences, 152, 300-305. DOI:10.1016/j.sbspro.2014.09.199 Washington, G. Y. (2019). The learning management system matters in face-to-face higher education courses. Journal of Educational Technology Systems, 48(2), 255-275. DOI:10.1177/0047239519874037 Zeng, N., Liu, Y., Gong, P., Hertogh, M., & König, M. (2021). Do right PLS and do PLS right: A critical review of the application of PLS-SEM in construction management research. Frontiers of Engineering Management, 8, 356-369. DOI:10.1007/s42524-021-0153-5